Cubics Review

You must use a separate piece of paper, and make sure you show work for every problem. Any work/answers written ON this sheet will not be graded!!

Calculate each power of \boldsymbol{i}.

1. i^{38}
2. i^{-11}

Solve by factoring.
3. $2 x^{2}-9 x-18=0$
4. Simplify $\sqrt{-216}$ using the imaginary number i.

Simplify the expression.
5. $(4+2 i)+(-2-3 i)$
6. $(2+5 i)-(-4-6 i)$
7. $(6-i)(5+3 i)$

Solve the quadratic equation by completing the square.
8. $x^{2}+14 x+42=0$

Use the Quadratic Formula to solve the equation.
9. $-2 x^{2}-10 x-8=0$

Describe the end behavior of the functions and determine the maximum number of extrema. Sketch the graph.
10. $f(x)=x^{5}-x^{3}+x-4$
11. $h(x)=-x^{8}-3 x^{4}-9$

Determine the product of the linear factors.
12. $(2 x-1)(x+3)(-3 x)$
13. $(1-3 x)(x+2)(x-5)$

Determine the product of the linear and quadratic factors.
14. $\left(2 x^{2}-3 x+4\right)(x+2)$
15. $(-2 x)(x+4)^{2}$

Given the graph;,determine the relative maximum/minimum.
16.

17.

Describe the transformations performed on $\boldsymbol{f}(\boldsymbol{x})$ that produced $\boldsymbol{g}(\boldsymbol{x})$.
18. $f(x)=x^{4} ; g(x)=3 f(x-2)$
19. $f(x)=x^{3} ; g(x)=-f(x+1)-3$

Write an equation for the given transformations.
20. $f(x)=x^{3}$

Reflect over the x -axis
Vertical compression of $\frac{1}{3}$
Translate down 3
21. $f(x)=x^{4}$

Vertical stretch of 2
Translate left 4
Translate up 1
22. The graph of the basic cubic function $h(x)=x^{3}$ is shown. Suppose that $k(x)=-h(x-2)$. Use reference points and symmetry to complete the table of values for $h(x)$. Then, graph $k(x)$ on the same coordinate plane as $k(x)$ and label it.

Reference Points on $\boldsymbol{h}(\boldsymbol{x})$	\rightarrow	Corresponding Points on $\boldsymbol{k}(\boldsymbol{x})$
$(0,0)$	\rightarrow	
$(1,1)$	\rightarrow	
$(2,8)$	\rightarrow	

23. The graph of the basic cubic function $f(x)=x^{3}$ is shown. Suppose that $g(x)=f(x-4)+2$. Use reference points and symmetry to complete the table of values for $f(x)$. Then, graph $g(x)$ on the same coordinate plane as $f(x)$ and label it.

Reference Points on $\boldsymbol{f}(\boldsymbol{x})$	\rightarrow	Corresponding Points on $\boldsymbol{g}(\boldsymbol{x})$
$(0,0)$	\rightarrow	
$(1,1)$	\rightarrow	
$(2,8)$	\rightarrow	

Factor by grouping and then solve the cubic equation.
24. $x^{3}-5 x^{2}-4 x+20=0$
25. $2 x^{3}+x^{2}+6 x+3=0$

Factor by finding a greatest common factor and then solve the cubic equation.
26. $x^{3}+3 x^{2}-4 x=0$
27. $2 x^{3}-12 x^{2}+22 x=0$

Factor using the sum or difference of cubes formula and then solve the cubic equation.
28. $x^{3}-27=0$
29. $8 x^{3}+216=0$

